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Abstract. Bénard-Marangoni instability in a bilayer liquid-gas system with a deformable interface is in-
vestigated. The present work is devoted to a linear approach. We discuss the influence on the onset of
stability of the following parameters: initial temperature profile, relative thickness of the gas and liquid
layers, deformation of the interface, influence of the evaporation process, and the wetting parameter.

PACS. 47.20.Dr Surface-tension-driven instability – 47.20.Hw Morphological instability; phase changes –
05.70.Np Interface and surface thermodynamics – 44.25.+f Natural convection

1 Introduction

It is well known that two different mechanisms are re-
sponsible for the appearance of motion in a fluid layer
subject to a temperature gradient. These mechanisms are
gravity (Rayleigh-Bénard [1] convection) and thermocapil-
larity (Bénard-Marangoni [2] convection). Thermoconvec-
tion induced by these mechanisms was studied by many
authors, as for instance, Bénard [3], Chandrasekhar [4]
(Rayleigh-Bénard instability) and Pearson [5] (Bénard-
Marangoni instability).

For a thin liquid layer in a micro-gravity environment,
surface tension is the main driving mechanism of the flow
instability. The first analysis of surface deformation effects
on thermocapillarity convection was proposed by Scriven
and Sterling [6]. The problem of thermocapillary instabil-
ity coupled with capillary and gravity waves was studied
recently by Regnier et al. [7,8], in the linear and non-
linear cases with surface deformation. The deformability
provides an additional “degree of freedom” and may have
a decisive role mainly in thin layers. The crispation num-
ber Cr which is a measure of the deformation must there-
fore be included as an additional parameter. It was found
by Davis and Homsy [9] that the surface deflection stabi-
lizes the system if the buoyancy is dominant and desta-
bilizes the system if surface tension effects are dominant.
It was also shown [10] that the system becomes uncondi-
tionally unstable with respect to disturbances with wave-
lengths tending to infinity. It is noteworthy that the above
referred works are only concerned with non-evaporating
liquid layers.
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When evaporation takes place, heat is drawn from the
bulk of the layer and reinforces instability. Acting as a
cascade effect, the increase of instability leads to an en-
hancement of the evaporating rate. Bénard-Marangoni in-
stability in an evaporating liquid layer was studied, under
a reduced pressure condition, experimentally by Gillon
et al. [11], and theoretically for both liquid and vapor
phase of infinite depth by Palmer [12]. A linear stabil-
ity analysis for a rapidly evaporating liquid surface has
been carried out by Prosperetti and Plesset [13], and by
Burelbach et al. [14] in the non linear case for a one liquid
phase with deformable upper surface. Similarity solutions
for the period preceding the onset of instability were ob-
tained by Ha [15], his stability analysis was restricted to
the linear case to a one layer system with an undeformable
upper surface.

The purpose of the present work is to study the onset
of Bénard-Marangoni instability in a liquid-gas bilayer un-
der evaporation with a deformable interface. The analysis
is restricted to a 2D-approach and the perturbations are
assumed to remain infinitesimally small (linear regime).
Gravity effects are assumed to be negligible and will not
be taken into account.

The paper is organized as follows. In Section 2, the
basic balance laws and the boundary conditions are es-
tablished. The reference solution is derived in the quasi
steady approximation in Section 3. The linear stability
analysis developed in Section 4 allows to determine the
threshold of instability of the evaporating liquid-gas sys-
tem as a function of various parameters. In Section 5, the
numerical results are presented and discussed, and con-
clusions are drawn in Section 6.



328 The European Physical Journal B

2 Mathematical formulation

The system is formed by an evaporating liquid layer of infi-
nite longitudinal extent in the x-direction, of initial depth
d and lying on a heated rigid horizontal plate (Fig. 1).
The liquid is incompressible, Newtonian, and heated from
below, the lower plate is maintained at the uniform tem-
perature TH . The liquid is surmounted by an inert gas
(say air) of initial thickness L at pressure pg. The gas is
bounded by a perfectly heat conducting upper plate main-
tained at temperature TC . A pump maintains a constant
reduced pressure in the gas layer and evacuates the gas
(vapor+air). The total distance between the two plates
remains constant and is equal to L + d.

Subscripts l and g describe the liquid and the gas
phases respectively. As the liquid evaporates, the upper
gas layer is formed by the mixture of air and liquid va-
por, respectively indexed by subscripts air and v. The
analysis is carried out in the frame of the Boussinesq ap-
proximation. The interface is deformable and subject to
a surface tension σs that decreases linearly with the tem-
perature T , i.e.,

σs = σ0 − γ(T − T0)

where σ0 is the surface tension at an arbitrary reference
temperature T0, say the temperature T0 of the ambient
atmosphere, γ = − ∂σs

∂T

∣
∣
T0

is equal to minus the rate of
change of surface tension with temperature, and is as-
sumed to be positive.
A cartesian coordinate system is selected with its origin lo-
cated at the bottom of the liquid layer, the z-axis pointing
towards the cold plate. The moving liquid-gas interface is
described by equation z = h(t, x).

The normal vector n to the interface, directed towards
the gas phase, and the tangential vector t have the follow-
ing x, z coordinates:

t =








1
√

1 + η2
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η
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−η
√

1 + η2
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where η = ∂h(t,x)
∂x denotes the deflection of the interface.

The interfacial normal velocity is given by

VI .n =
∂h(t, x)

∂t
/
√

1 + η2. (1)

The field equations and the boundary conditions will
be put under non-dimensional form by using the following
scalings: d for length, d2/αl for time, αl/d for velocity,
ρlαl

2/d2 for pressure, ρlαl/d for the mass flux where ρl

and αl designates the mass density and thermal diffusivity
of the liquid respectively. Dimensionless temperature fields
are defined through T ∗ = T−TH

hlg
cpl

. The quantity hlg is the

latent heat of evaporation, cpl
is the heat capacity of the

liquid at constant pressure.

Fig. 1. Physical domain.

In absence of gravity, the dimensionless (indexed by ∗)
governing equations are:

- Liquid phase equations:

∇ ·Vl
∗ = 0, (2)

P−1
rl

[
∂Vl

∗

∂t∗
+ (Vl

∗ · ∇)Vl
∗ + ∇p∗l ] = ∇2Vl

∗, (3)

∂T ∗
l

∂t∗
+ (Vl

∗ · ∇)T ∗
l = ∇2T ∗

l , (4)

- Gas phase equations:

∇ · Vg
∗ = 0, (5)

P−1
rg

φα[
∂Vg

∗

∂t∗
+ (Vg

∗ · ∇)Vg
∗ + φρ∇p∗g] = ∇2Vg

∗, (6)

φα[
∂T ∗

g

∂t∗
+ (Vg

∗ · ∇)T ∗
g ] = ∇2T ∗

g , (7)

φαLe[
∂Y ∗

v

∂t∗
+ (Vg

∗ · ∇)Y ∗
v ] = ∇2Y ∗

v , (8)

where the symbols V∗ = (u∗, v∗, w∗), p∗, T ∗ represent the
nondimensional velocity, pressure and temperature fields
respectively, Y ∗

v is the mass fraction of liquid vapor (al-
ready nondimensional), and is linked with the mass frac-
tion of the air by the relation Y ∗

air +Y ∗
v = 1. The quantity

Prl
=

µl

ρlαl
is the Prandtl number of the liquid, where

µl is the dynamic viscosity, Prg =
µg

ρgαg
is the Prandtl

number of the gas, φα =
αl

αg
is the ratio of the thermal

diffusivities of the liquid and the gas, φρ =
ρl

ρg
is similarly

defined as the ratio of the densities, and finally Le =
αg

αv
is the Lewis number, where αv designates the diffusion
coefficient of the water vapor into the gas.

The relevant dimensionless initial and boundary con-
ditions are:

Initial conditions
At t = 0, the depth of the liquid layer is equal to d, the
initial temperature and velocity are supposed to be known
and independent of the x-coordinate. More precisely, one
has T ∗

l = 0, T ∗
g = constant, Vg

∗ = constant,
Vl

∗ = 0, Y ∗
v = constant.
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Boundary conditions
At the solid impermeable hot wall (z∗ = 0):

T ∗
l = 0, Vl

∗ =0. (9)

At the solid permeable upper plate (z∗ = 1 + l):

T ∗
g = T ∗

C , Y ∗
v = Y ∗

L , t.τ ∗
gn = 0, (10)

where l = L/d is the ratio of initial gas layer depth to the
initial liquid layer depth, Y ∗

L is a measure of the wetting
of the upper plate, and τ ∗

g = µg((∇Vg
∗)T + ∇Vg

∗) the
viscous tensor with subscript T denoting transposition.

A no stress condition is used for the upper plate be-
cause the plate that we consider is permeable and has a
high porosity. Note that for a plate with small porosity, a
rigidity condition (no-slip) is more appropriate. We have
investigated this condition too and have observed that the
results are weakly affected by the choice of this condition.

At the interface z∗ = h∗(t∗, x∗):

- The continuity of the tangential velocities yields

Vg
∗.t = Vl

∗.t. (11)

- Continuity of mass flux leads to

J∗ = Vl
∗.n − VI

∗.n = (Vg
∗.n − VI

∗.n)
1
φρ

, (12)

where J∗ is the dimensionless interfacial mass flux.

- Impermeability condition:

1
φαLeφρ

∇Y ∗
v .n = −(1 − Y ∗

v )J∗. (13)

- Temperature continuity:

T ∗
i = T ∗

l = T ∗
g , (14)

where T ∗
i is the non dimensional temperature at the in-

terface.

- Balance of energy:

J∗ =
1
φλ

∇T ∗
g .n−∇T ∗

l .n, (15)

where φλ =
λl

λg
is the thermal conductivity ratio.

- Continuity of shear stress:

t.τ ∗
gn − φµt.τ ∗

l n = Maφµ∇‖T ∗
l , (16)

where φµ =
µl

µg
is the viscosity ratio, ∇‖ the interfacial

gradient, and

Ma = −∂σs

∂T

hlgd

cpl
αlµl

the dimensionless Marangoni number as defined by
Ha [13]. Ma has a fixed value for a given fluid provided
the initial liquid depth is fixed. For further purpose, we

introduce also the crispation number Cr =
µlαl

dσ0
, which

measures the deformability of the interface. For a given

fluid, the parameters Ma and
1

Cr
are both proportional to

the initial depth d and do not depend of any other param-
eters, like temperature TH ot TC , so that this Marangoni
number Ma, as defined by Ha, and the crispation number
Cr are not independent.

- Normal stress balance:

p∗g − p∗l =Prl
(

1
φµ

t.τ ∗
gn− t.τ ∗

l n)

+ J∗(Vg
∗.n − Vl

∗.n) − C∗Prl

Cr

σs

σo
, (17)

where C∗ = ∇.n is the curvature of the interface, and

σs

σo
= 1 − MaCr(T ∗

i − T ∗
0 ),

Assuming that the vapor is satured at the interface,
one obtains from the equality of the chemical potentials
at the interface, the following relation for the interfacial
vapor mass fraction Y ∗

i [13]:

Y ∗
i =

exp







cpl

�







1

T ∗
b +

cpl
TH

hlg

− 1
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i +

cpl
TH

hlg













rw−(rw−1) exp
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1
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b +

cpl
TH

hlg

− 1

T ∗
i +

cpl
TH

hlg













,

(18)

the undefined quantities �, rw =
Mair

Ml
and T ∗

b are respec-

tively the universal gas constant, the ratio of the molecular
weights of air and liquid, and the nondimensional boiling
temperature of the liquid.

3 Quasi-steady solution in the reference state

Here we work within the quasi-steady approximation
which means that the time derivatives in the partial differ-
ential equations for both the liquid and gas phases are zero
except in the interfacial kinematical condition (1). The set
of equations (1–18) is characterized by a so-called refer-
ence one dimensional solution independent of the x∗ co-
ordinate. Continuity equations (2) and (5) lead to a null
velocity in the liquid phase and to a constant velocity in
the gas phase. The pressures are uniform. The tempera-
ture profile is linear with respect to z∗ in the liquid phase,
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but non linear in the gas phase, namely:

T ∗
l (z∗, t∗) = T ∗

i +
T ∗

i

h∗(t∗)
(z∗ − h∗(t∗)), (19)

T ∗
g (z∗, t∗) = T ∗

i − (T ∗
i − T ∗

C)

×
1 − exp

[

φα

(

w∗
g − ∂h∗(t∗)

∂t∗

)

(z∗ − h∗(t∗))
]

1 − exp
[

φα

(

w∗
g − ∂h∗(t∗)

∂t∗

)

L∗(t∗)
] ,

(20)

where L∗(t∗) = 1 + l− h∗(t∗). According to relations (10)
and (13) the expression of the mass fraction is given by

Y ∗
v (z∗, t∗) = 1 + (Y ∗

L − 1)

× exp
[

φαLe

(

w∗
g − ∂h∗(t∗)

∂t∗

)

(z∗ − l − 1)
]

. (21)

Combining this relation with (12), one obtains at the in-
terface the following relation between J∗ and Y ∗

i :

J∗ =
1

φαLeφρL∗(t∗)
log

(
1 − Y ∗

L

1 − Y ∗
i

)

, ∀t∗. (22)

From the energy balance equation (15), the temperature
profiles (19) and (20), and the definition (12), it is found
that

J∗ =
1
φλ

(T ∗
i − T ∗

C)
φαJ∗φρ

1 − exp(φαJ∗φρL∗(t∗))

− T ∗
i

1
h∗(t∗)

, ∀t∗. (23)

The resolution of the set of three equations (18), (22),
and (23), involving the three unknowns quantities T ∗

i , Y ∗
i

and J∗ allows us to determine the mass flux J∗, as a func-
tion of the liquid height parameter h∗(t) at any instant of
time. Since in virtue of expression (12), one has

J∗ = −∂h∗(t∗)
∂t∗

, (24)

one obtains after integration an expression for the evo-
lution h∗(t) of the evaporating liquid layer depth as a
function of time. For a given fluid, the reference state de-
pends on the four non dimensional parameters TH

cpl

hlg
, T ∗

C ,
l, and YL.

4 Stability analysis

In this section, we study the stability of the reference so-
lution derived in the previous section in view to deter-
mine the onset of instability. As only infinitesimally small
disturbances are considered, the analysis is strictly linear.
Superscript “ ’ ” denotes the perturbed quantities, namely
G′ = G∗ − G∗

r . In addition, it is assumed that the basic
solution, indexed r, remains frozen during the stability
analysis.

By applying the divergence operator on the Navier-
Stokes equations, and using the continuity equation, we
can eliminate the horizontal component velocity, we are
then left with the following set of unknowns (w′, p′, T ′),
both in the liquid and gas phase, complemented by Y ′

v

and h′.
According to the classical procedure, these quantities

are expanded in normal modes, i.e. explicitly
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,

the quantity k is the wave number, σ is the growth rate
of the disturbance which determines the degree of ampli-
fication or damping, the z-dependent quantities are the
so-called amplitudes. For simplicity, we omit the super-
scripts tilda and star ∗, and use the following approxima-
tion φρ − 1 ≈ φρ.

Under these restrictions, we obtain the following lin-
earized relations for the amplitudes:

– liquid-gas phase equations:

(D2 − k2)pl = 0, (25)

(D2 − k2)pg = 0, (26)

P−1
rl

[σwl + Dpl] = (D2 − k2)wl, (27)

P−1
rg

φα[(σ + φρJrD)wg + φρDpg] = (D2 − k2)wg, (28)

φα[(σ + φρJrD)Tg + wgDTg,r] = (D2 − k2)Tg, (29)

σTl + wlDTl,r = (D2 − k2)Tl, (30)

φαLe [(σ + φρJrD)Yv + wgDYv,r] = (D2 − k2)Yv, (31)

where D stands for d/dz.

– Wall boundary conditions:

z = 0 : Tl = wl = Dwl = 0, (32)

z = 1 + l : Tg = wg = Yv = (D2 + k2)wg = 0. (33)

– Interfacial conditions (z = hr(tr)):

Dwl − Dwg = wg,rk
2Λ, (34)

Jφρ = φρ(wl − σΛ) = wg − σΛ, (35)

1
Leφα

DYv = (Yi,r − 1)(wg − σΛ) + Yv(hr(tr))Jrφρ, (36)

Tl − Tg = (DTg,r − DTl,r)Λ, (37)
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1
φρ

(wg − σΛ) =
1
φλ

DTg − DTl

+ Λ(
1
φλ

D2Tg,r − D2Tl,r), (38)

(k2 + D2)(−wg + φµwl) = −Mak2φµ(Tl + DTl,rΛ), (39)

pg − pl =2Prl
(

1
φµ

Dwg − Dwl) − 2Jr(wg − wl)

− k2Prl

Cr
Λ

σs

σo
, (40)

Yv = (
df(Tl,r)
dTl,r

DTl,r − DYv,r)Λ +
df(Tl,r)
dTl,r

Tl, (41)

where

f(Tl,r) =

exp







cpl

�







1

T ∗
b +

cpl
TH

hlg

− 1

Tl,r+
cpl

TH

hlg













rw−(rw−1) exp







cpl
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1
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b +

cpl
TH

hlg

− 1

Tl,r+
cpl

TH

hlg













.

(42)

Observe that the particular case of an undeformable sur-
face is directly treated by setting Λ = 0 and by disregard-
ing the normal force balance equation (40). A remark is in
form concerning the boundary condition (37) which seems
to be in contradiction with the boundary condition (14)
T ∗

l = T ∗
g . The latter is truly satisfied at the liquid-gas

deformed interface of equation z∗ = h∗(t∗, x∗). This is
not in conflict with equation (37) as the latter refers to
the boundary condition to be satisfied by the linearized
perturbation on the flat reference interface of equation
z = hr(tr). Expression (37) represents the price to be paid
for the linearization modeling. The jump in (37) is the con-
sequence of the presence of a deformed interface, whose
exact position is described by hr(tr)+ Λ exp(σt + ikx). In
absence of deformation (Λ = 0), one recovers the result
T ∗

l = T ∗
g as it should. All the relations (34) to (41) have

a right term proportional to Λ which is of the same kind
that the term appearing in relation (37) when dealing with
the interface deformation.

The linear differential set of equations (25–42) has non
trivial solutions that can be found numerically. We are
faced with an eigenvalue problem from which we are able
to determine the marginal stability curves Ma versus k
corresponding to σ = 0, for the four other independent pa-
rameters TH

cpl

hlg
, T ∗

C , l, and YL fixed; in the present work,
exchange of stability is taken for granted.

5 Results and comments

In our calculations, we have considered two different flu-
ids: water and ethanol. The essential difference is that

ethanol is more volatile than water. The ambient refer-
ence dimensional temperature T0 is equal to 30 ◦C. The
surface tension σ0 for this dimensional temperature is of
the order of 10−2 N/m for both liquids. The inert gas is,
as stated before, assumed to be air.

We will discuss the role of some parameters on the
onset of motion. In particular, we examine the effect of
the value of the temperature TH imposed at the bottom
heating plate, the ratio of the initial gas layer depth to the
initial liquid layer depth l, and the mass fraction of liquid
vapor YL evacuated through the upper boundary.

It is well known that in presence of surface deforma-
tions, we are faced with two kinds of instabilities: the ‘clas-
sical’ short wavelength Marangoni mode correspond to
critical wave-numbers close to two and the long wave mode
instability for which the wave-number tends to zero. In the
latter situation, the deformation was shown to be desta-
bilizing in the absence of evaporation [5,6]. We will see
that these two kinds of instabilities are still present when
there is evaporation with a deformable interface. Figure 2
shows marginal stability curves Ma versus k for differ-
ent values of the hot plate temperature TH . The marginal
stability curves Cr versus k are obviously derived from
the Ma(k) curves because Cr and Ma are linked by the

relation Cr =
αr

Ma
where the coefficient αr =

γhlg

cplσ0
is

known for a given fluid. We have verified that the unsta-
ble domain is the domain above the neutral stability curve
Ma(k) by studying some non null growth rate σ.

First, we notice that an increase of the temperature at
the bottom plate has a destabilizing effect. Indeed, for a
bottom plate temperature such that TC = TH = 50 ◦C,
with YL = 0, l = 1, h∗

r = 1, the curve of neutral stability
is below the one corresponding to TH = TC = 30 ◦C, (see
Fig. 2).

For different values of the temperature at the bot-
tom and the top plates, it is the temperature at the
lower boundary which is the more influent. For example
if TC = 30 ◦C, and TH = 60 ◦C the neutral stability
curve behaves as in the case TH = TC = 60 ◦C. We there-
fore conclude that the temperature of the gas at the upper
plate has only a slight effect on the onset of instability. Ob-
serve that in the case TH = TC , the evaporation process
absorbs heat, and therefore, there exists a temperature
gradient through the liquid layer which is the source of
instability. It appears also that the most dangerous mode
occurs at small values of k.

When the temperature at the boundaries is maintained
at TH = TC = 30 ◦C, and the mass fraction of liquid va-
por YL = 0, then by increasing the ratio l we find that
the curve of neutral stability moves towards larger critical
Marangoni values, as exhibited by Figure 3. It means that
the system is more stable when l is increased. As a con-
sequence of the increase of l, the interfacial mass flux J
becomes smaller and smaller.

The behaviour of the system at small wave numbers
is represented in Figure 4. It is observed that instability
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Fig. 2. Neutral stability curves, Ma versus k, for ethanol and water: role of the temperature of the lower plate, TC = TH ,
l = 1, YL = 0, h∗

r = 1.

Fig. 3. Neutral stability curves: role of the relative thickness between the gas and liquid, TH = TC = 30 ◦C, YL = 0, h∗
r = 1.

Fig. 4. The same as in Figure 3 but for small values of k.

is increased when l is growing, while conversely, for large
wave numbers, it is for large l values that system is more
stable.

We have also investigated the role of the mass fraction
YL at the upper plate on instability. Let TH = TC = 30 ◦C
and l = 1. For this temperature-value, an increase of
YL has a stabilizing effect in the case of ethanol as well
as of water (see Fig. 5). In the case of ethanol (resp.
in the case of water) for an initial liquid layer depth of
d = 10−4 m, the Marangoni number value is Ma = 66794
(resp. 147 882). This value is shown in Figure 5 by an hor-
izontal straight line. For this value the crispation number
Cr is 4.8 × 10−5. For 0.14477 > YL > 0.126 the basic
solution is always stable for the short wave modes. For

YL > 0.14477 we have condensation and the interfacial
mass flux J has a negative value. In Figure 6 which is a
magnification of Figure 5, we report the results in the re-
gion of small wave numbers: the system is more unstable
when YL is decreased and is the most unstable for YL = 0.
A similar behaviour is observed with water.

To illustrate the behaviour of the non trivial solutions
of the eigenvalue value problem, we have represented in
the x − z plane the non dimensional isothermal lines and
the velocity field of the perturbed quantities for an ethanol
layer surmounted by air (see Fig. 7). We have taken TC =
TH = 30 ◦C, l = 1, YL = 0.126. The corresponding critical
Marangoni and wave numbers are Ma = 66794, and kc =
1.99.
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Fig. 5. Neutral stability curves: role of the upper plate mass fraction of liquid vapor influence, TC = TH = 30 ◦C, h∗
r = 1, l = 1.

Fig. 6. The same as in Figure 5 but for small values of k.
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Fig. 7. Long wave number mode: (a) Isothermal lines, (b) Velocity fields, TH = TC = 30 ◦C, l = 1, YL = 0.126, Ma = 66794,
and k = 1.99. (Ethanol.)

The initial depth of the liquid layer is d = 10−4 m:
for this value, the crispation number Cr is 4.8 × 10−5 for
ethanol. The corresponding neutral stability curve in this
case is represented in Figure 5. In Figure 7b for the veloc-
ity fields, bright regions correspond to large velocity fields
and darker regions to slower velocities. We have normal-
ized the linear perturbed fields by the maximum intensity
of the liquid velocity at the interface. The velocity is larger
in the liquid than in the gas. The perturbed temperature
values are very small so that we have multiplied their ac-
tual values by a factor 105 as is indicated in the figure.
The convection cells are seen to be well developed and the
maximum of the velocity corresponds to the minimum of
the temperature. The deformation of the interface is neg-
ligible for this wave number.

Figure 8 reproduces the temperature and velocities
fields for the same parameters as above (Ma = 66794,
YL = 0.126) but now for the small wave number k = 0.1
that corresponds to another non trivial solution of the
eigenvalue problem. We have divided the actual gas phase
velocity values by a factor 5 for convenience. The defor-
mation of the interface is also sketched with the isother-
mal lines. The deformation is important for this value of
k. This leads to a jump of the perturbed temperature
through the reference interface, (cf. Eq. (37)). The maxi-
mum of the velocity corresponds also to the minimum of
the temperature, but contrary to the critical wave number
of Figure 5, the velocity now, is higher in the gas phase
than in the liquid phase.
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Fig. 8. Short wave number mode: (a) Isothermal lines, (b) Velocity fields, TH = TC = 30 ◦C, l = 1, YL = 0.126, Ma = 66794,
and k = 0.1. (Ethanol.)

6 Conclusions

Our objective was to study the onset of thermo-convective
instability in an evaporating liquid layer heated from be-
low and surmounted by a non reacting gas. In addition
the liquid-gas interface is allowed to be deformable. Un-
der microgravity and the quasi-steady approximation, a
linear approach is carried out. We highlight the stabiliz-
ing and destabilizing effects, by varying some parameters
like the relative depth of the gas and liquid layers, the tem-
perature at the bottom plate, and the mass fraction coef-
ficient. The results are presented and analyzed, for both
the short and long wave-lengths. It appears that evapora-
tion and deformation play a determinant role. The effect
of evaporation is essentially destabilizing while deforma-
tion of the interface gives rise to marginal curves with
two minima: one located at small value of k close to zero,
the other one located around k = 2. In most cases, the
mode close to k = 0 is the most unstable. Of course many
problems remain open like the coupled effect of gravity
and surface-tension driven instability, and a study of the
transitory regime preceding the occurrence of the steady
study. It would also be interesting to compare our results
with experimental data. But to our knowledge, no much
data are available.

7 Nomenclature

cpl
Heat capacity of the liquid

cpg Heat capacity of the gas
Cr =

µlαl

σsd
Crispation number

d Depth of the liquid layer
hlg = hg − hl Latent heat of evaporation
J Interfacial mass flux
k Wave number of disturbances
Le =

αg

αv
Lewis number

Ma = − ∂σ
∂T∗

l

hlgd
cpl

αlµg
Marangoni number

Mair Molecular weight of air
Ml Molecular weight of liquid
Prl

=
µl

ρlαl
Prandtl number of the liquid

Prg =
µg

ρgαg
Prandtl number of the gas

rω = Mair

Ml
Weight molecular ratio

� Universal gas constant
Tb Boiling temperature of liquid
TC Temperature at the cold upper plate
TH Temperature at the hot lower plate
Ti Interfacial temperature
ul, vl, wl Coordinates of the vector velocity
VI Interfacial velocity
Yv =

ρv

ρg
Mass fraction of liquid vapor

αl =
λl

ρlcpl

Thermal diffusivity of the liquid

αg =
λg

ρgcpg

Thermal diffusivity of the gas

αv Mass diffusivity
λg Thermal conductivity of gas
λl Thermal conductivity of liquid
µl Dynamic viscosity of the liquid
µg Dynamic viscosity of the gas

ρl Density of the liquid
ρg Density of the gas
σ growth rate
φα =

αl

αg
Thermal diffusivity ratio

φρ =
ρl

ρg
Density ratio

φλ =
λl

λg
Thermal conductivity ratio

φµ = µl

µg
Viscosity ratio
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